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Abstract

Soil salinization is a growing environmental issue in
coastal urban regions, impacting land productivity,
vegetation health and infrastructure. This study
provides a geospatial assessment of soil salinity across
the Chennai Metropolitan Region using multi-temporal
Landsat 8 OLI imagery and spectral salinity indices.
Thirteen indices including SI, SI1-SI4, SR, RSI, MSR,
NDSI, NDVI, GNDVI, SAVI, DVI, VSSI and EVI were
used to capture surface reflectance and vegetation
degradation. An integrated machine learning-based
overlay analysis using Random Forest (RF) classified
salinity into five categories: very low, low, moderate,
high and very high. Results indicate that the northern
coastal belt of Chennai, especially areas near the Bay
of Bengal, falls under high to very high salinity due to
tidal intrusion, urbanization and inadequate drainage.
Inland zones like Madhavaram, Ambattur, Alandur,
Guindy, Velachery and Sholinganallur showed low to
moderate salinity levels. Landuse Land Cover (LULC)
data for 2025 was incorporated to examine spatial
correlations between salinity and urban expansion.

This study highlights the effectiveness of combining
spectral indices with machine learning to identify
salinity hotspots and support informed urban planning
and sustainable land management in vulnerable
coastal megacities.

Keywords: Soil salinity, Remote sensing, Spectral indices,
Machine learning, Random Forest and Urban planning.

Introduction

Soil salinity is a critical form of land degradation that
adversely affects agricultural productivity, ecological health
and infrastructure stability, especially in coastal regions
where seawater intrusion and urban expansion intersect®2°,
Excessive accumulation of soluble salts in the soil profile
leads to a decline in soil fertility, reduced plant growth and
increased surface crusting, all of which have significant
implications for food security and sustainable land use®?’. In
urbanizing coastal environments like Chennai, salinity is
further exacerbated by unplanned development, rising sea
levels, groundwater over-extraction and poor surface
drainage systems?>3°, Remote Sensing (RS) and Geographic
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Information Systems (GIS) have emerged as indispensable
tools for mapping, monitoring and managing soil salinity at
various spatial and temporal scales?*. These technologies
enable efficient extraction of land surface characteristics
such as soil reflectance, vegetation health and topographic
variations®26. Spectral indices derived from satellite data -
particularly those based on Landsat 8 OLI bands, offer a
non-invasive means of detecting saline soils and assessing
their impact on vegetation cover!*, When integrated with
machine learning (ML) algorithms, such as Random Forest
(RF), the classification and prediction of salinity levels can
be significantly enhanced®.

The Chennai Metropolitan Region (CMR) faces multiple
environmental challenges including coastal erosion,
seawater intrusion, surface water contamination and
vegetation stress’®2!, The city’s proximity to the Bay of
Bengal, combined with its flat topography and increasing
urban sprawl, has led to notable changes in landuse and land
cover (LULC), contributing to localized salinity build
up®®?8, Regions in the northern coastal belt show high
vulnerability due to direct tidal influence whereas inland
zones exhibit comparatively lower levels of salinization®3.
This environmental variability necessitates a detailed and
spatially explicit analysis to support mitigation and planning
strategies®®.

This study aims to conduct a comprehensive geospatial
assessment of soil salinity in Chennai using a multi-index
approach derived from satellite-based spectral reflectance
data®>?2. Thirteen salinity and vegetation indices, including
Sl, SI1-Sl14, NDSI, NDVI, SAVI, VSSI and EVI, are
utilized to derive surface conditions. RF classifier is
employed to categorize salinity levels across the study
areal®. Furthermore, LULC 2025 is used to understand the
spatial relationship between land transformation and salinity
severity!’. The novelty of this research lies in its integration
of multiple spectral indices with a machine learning-based
classification model to produce a detailed, high-resolution
salinity map for an urban coastal environment**2,

Unlike conventional field-based assessments, this approach
provides a cost-effective, scalable and replicable method to
monitor soil salinity in real timel!!. Additionally, by
correlating salinity hotspots with urban development zones,
the study contributes valuable insights for sustainable land
management, climate adaptation and urban planning in
rapidly growing coastal cities like Chennai®?3,
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Material and Methods

The study is focused on Chennai, the capital of Tamil Nadu,
located on the south-eastern coast of India along the Bay of
Bengal. The study area extends approximately 435.77 square
kilometres between 12°32'N to 13°12'N latitude and 80°04'E
to 80°20'E longitude (Figure 1). Chennai is a major
metropolitan hub with a population exceeding 10 million,
making it one of the largest and most densely populated
cities in India. The city experiences a tropical wet and dry
climate, with peak rainfall during the northeast monsoon.
The region’s flat terrain and low elevation, combined with
coastal location, make it highly susceptible to flooding,
saline water intrusion and land degradation, especially in
low-lying and peri-urban regions.

Urban expansion, coupled with reclamation of wetlands,
unregulated construction and groundwater over-extraction,
has intensified the environmental stress on the region. Soil
salinization has become a pressing issue, particularly in the
northern and southeastern parts of Chennai, where increased
surface reflectance and vegetation loss are evident. These
changes have adversely impacted agricultural viability,
ecological stability and infrastructure longevity. To address
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these challenges, it is essential to implement a spatially
informed monitoring framework that integrates remote
sensing indices to detect and analyse soil salinity and
vegetation stress. Such analysis provides crucial insights for
urban planners, environmental managers and policymakers
to identify vulnerable zones, guide sustainable development
and mitigate long-term risks associated with land
degradation and environmental change in Chennai.

The region is characterized by coastal climatic conditions,
making it susceptible to soil salinization, urban expansion
and vegetation stress?. Satellite imagery for April 2025 was
acquired from the United States Geological Survey (USGS)
Earth Explorer portal using Landsat 8 OLI/TIRS data?’.
April was chosen to represent pre-monsoon dry conditions,
when salinity effects are more pronounced and vegetation
stress becomes spatially evident.

The satellite data underwent radiometric and atmospheric
correction. Band combinations were used to derive various
spectral indices using the raster calculator in ArcGIS?. Each
index is used to detect soil salinity, vegetation health, or
both?.
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Figure 1: Study area location map
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Table 1
Spectral Indices and Formulas Used for Salinity and Vegetation Assessment
S.N. Index Formula
1. | Salinity Index (S1)81! SI = +/Blue * Red
2. | Salinity Index 1 (SI1)* s = Ble
Red
3. | Salinity Index 2 (SI2)* s[p = (Blue—Red)
(Blue+Red)
4. | Salinity Index 3 (S13)% gJ3 = (Green+Red)
Blue
5. | Salinity Index 4 (S14)* §J4 = (WIR*Red)
Green
6. | Simple Ratio (SR)*® SR — (Red-NIR)
(Green+NIR)
7. | Ratio Spectral Index (RSI)?? RSI = Red
NIR
8. | Mosaic Simple Ratio (MSR)% MSR = Y&
Red
9. | Normalized Difference Salinity Index (NDSI)?® NDS] = (Bed-NIR)
(Red+NIR)
10. | Normalized Difference Vegetation Index (NDVI)? NDV] = WIR=Red)
(NIR+Red)
11. | Green Normalized Difference Vegetation Index (GNDVI)* | sypy = WIR=Green)
(NIR+Green)
12. | Soil Adjusted Vegetation Index (SAVI)* SAVI
B (NIR — Red)
~ (NIR+Red)+L *(1-1)
13. | Differential Vegetation Index (DVI)’ DVI = NIR — Red
14. | Vegetation Soil Salinity Index (VSSI)*? VSSI =2 * Green -5 * (Red +
NIR) * Green — 5 * (Red +
NIR)
15. | Enhanced Vegetation Index (EVI)?° EVI = 2.5«
NIR—RED
NIR+(6+*RED—7.5+Blue)+1
16. | Brightness Index (BI)%° B = [Rea?+Green?
2

Salinity indices are spectral indicators derived from remote
sensing data that help to detect and monitor salt-affected
soils based on their unique reflectance characteristics in
different wavelength bands®. Soil salinity alters the surface
reflectance, typically increasing brightness in the visible
(Blue, Green, Red) bands and decreasing reflectance in the
near-infrared (NIR) band due to reduced vegetation cover
and soil crusting (Table 1)*2.

Machine Learning Technique

Model Selection and Implementation: Extreme gradient
boosting (XGBoost) algorithm was employed due to its
superior performance in classification and regression tasks,
handling of non-linearity and resistance to over fitting
through regularization. The model was trained using spectral
indices derived from satellite data as input features. These
include salinity indices, vegetation indices and brightness
indices known to correlate with soil salinity. The training
dataset was split into training (70%) and testing (30%)
subsets. Feature standardization was applied before model
training.

The XGBoost model is based on gradient boosting decision
trees, where a series of weak learners (trees) are combined
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to create a strong learner. The objective function of XGBoost
is defined as:

L(®) = X, I(yi, Yi) + 2F_, Q(fk) @)

where I(yi, Yi) is loss function that measures the difference
between the prediction Yi and the actual target yi,

Q(fk) is yT +%)\ Yi-aw? for regularization of term
controlling model complexity, T is number of leaves in the
tree, wj is weight of the j™ leaf and vy, A is regularization

parameters.

The prediction of an instance is obtained by summing the
outputs of all regression trees:

Y=Zlk(=1fk(xi), fref @)

where f is space of regression trees, f is individual tree
function. Model tuning was carried out using grid search and
cross-validation for parameters including learning rate (),
maximum depth, subsample ratio, column sample by tree
and number of boosting rounds.
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Table 2
Accuracy Metrics and Formulae for Salinity Classification Model Evaluation
Metrics Formulae Description
X cy C;; is the correctly classified samples for class i and N
Overall Accuracy (OA) 04 = =5 is the total number of samples.
Kappa Coefficient (x): k= po_—pe P, IS observed agreement and p,, is expected agreement
1-pe by chance.
Precision (P): _ TP TP is True Positives, FP: False Positives, FN: False
recision (P): " TP+FP Negatives. The XGBoost model was implemented in
Python using the XGBoost library. The final trained
Recall (R): =_TIP model was used to generate salinity zone maps over the
TPHEN study area, which were validated against ground truth
F1 Score: F1=2x ::’; and existing salinity data.

Accuracy Assessment: To evaluate the performance of the
XGBoost model in salinity classification, the following
accuracy metrics were computed using the confusion matrix
derived from predicted vs. actual salinity zones (Table 2).

Landuse and Land Cover Mapping: Landsat 8 OLI and
Landsat 9 imagery (30 m resolution) from April 2025 were
used for Land Use and Land Cover (LULC) mapping.
Cloud-free images were pre-processed through radiometric
calibration, atmospheric correction (DOS1) and mosaicking.
The NRSC Level-3 classification scheme guided
interpretation using false colour composites (FCC) from
bands 5, 4 and 3. Visual interpretation was performed
onscreen in ArcGIS at a 1:10,000 scale using keys like tone,
texture, shape and association. Ancillary data, including
topographic maps, prior LULC maps and Google Earth
imagery, supported accurate feature delineation. The final
LULC map was overlaid with a soil salinity classification
map generated using the XGBoost model.

This integrated analysis revealed that salinity predominantly
affected fallow lands, sandy areas, swampy lands and land
without scrub. The study highlights the spatial correlation
between LULC patterns and soil salinity, offering valuable
inputs for targeted land management and reclamation
strategies.

Results and Discussion

The application of the XGBoost machine learning model for
soil salinity mapping utilized a suite of spectral indices
derived from satellite imagery?. These indices were selected
for their relevance in detecting surface reflectance changes
influenced by salinity and vegetation stress?. The spatial
variation and statistical range of each index are presented in
figure 2 to 5. Figure 2 highlights the spatial distribution of
salinity-specific indices. The salinity index (SI) (Figure 2a)
ranges from —0.45 to 0.63, exhibiting moderate spatial
variability across the region. Elevated Sl values are observed
in coastal and low-lying inland zones, indicating areas prone
to salt accumulation?’. Salinity index 1 (SI1) (Figure 2b),
with a range from -0.23 to 0.72, demonstrates higher
sensitivity in detecting saline patches, particularly over
sparsely vegetated and bare soil regions®. Salinity index 2
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(S12) (Figure 2c) spans from —0.61 to 0.11 and shows
predominantly negative values, possibly due to surface
moisture or organic matter suppressing salinity signals?.,
Meanwhile, salinity index 3 (SI13) (Figure 2d) ranges from —
0.49 to 0.18, highlighting regions with reduced salinity
expression, often influenced by clayey or shaded areas?.
Figure 3 presents ratio-based indices that further refine
salinity detection. Salinity index 4 (SI4) (Figure 3a) ranges
from —0.08 to 0.42, balancing responses from soil brightness
and vegetative stress. Simple ratio (SR) (Figure 3b), with
values from —0.47 to 0.37, shows negative values in regions
dominated by non-photosynthetic or salt-affected surfaces®.

Ratio spectral index (RSI) (Figure 3c) ranges from —0.76 to
0.35, offering enhanced sensitivity to surface reflectance
where salt crusting is prevalent?®. The Mosaic simple ratio
(MSR) (Figure 3d), ranging from —0.32 to 0.79, captures
strong spectral contrasts in heterogeneous land-use zones,
particularly in agricultural-fallow transitions often
associated with salinity accumulation®4,

Figure 4 features normalized indices that integrate
vegetation responses as proxies for salinity stress. The
Normalized Difference Salinity Index (NDSI) (Figure 4a)
ranges from —0.49 to 0.13 where negative values dominate,
highlighting vegetative degradation due to salinity>. The
Normalized Difference Vegetation Index (NDVI) (Figure
4b), with a range from -0.13 to 0.49, reveals clear
distinctions in vegetation vigor, with NDV 1 values below 0.2
aligning with moderate to high salinity zones’. The Green
Normalized Difference Vegetation Index (GNDVI) (Figure
4c¢), spanning —0.14 to 0.44, displays increased sensitivity to
chlorophyll variations, especially in semi-arid or salt-
stressed zones'?.

Soil Adjusted Vegetation Index (SAVI) (Figure 4d) ranges
from —0.11 to 0.74 and performs effectively in areas with
partial vegetation cover by minimizing soil background
effects'®. Figure 5 illustrates additional indices that capture
vegetation degradation and soil reflectance properties. The
Differential Vegetation Index (DVI) (Figure 5a), ranging
from —0.02 to 0.17, shows limited contrast but is useful for
detecting subtle vegetation variations linked to salt stress®®.

62



Disaster Advances

The Vegetation Soil Salinity Index (VSSI) (Figure 5b), with
values from —0.07 to 0.73, offers a comprehensive view of
both vegetation health and soil salinity, with higher values
marking saline-affected zones®3.

The Enhanced Vegetation Index (EVI) (Figure 5c), varying
between —0.09 and 0.72, is especially effective in capturing
vegetation stress responses in  moderately saline
environments®. Lastly, the Brightness Index (Bl) (Figure
5d) spans from —0.74 to 0.25, highlighting areas with high
surface reflectance commonly associated with salt-encrusted
or bare soils®. These indices collectively serve as robust
indicators of salinity zones and are critical inputs for the
XGBoost model*.

The variation in their spatial ranges and distributions
underscores the complex interplay between soil salinity,
vegetation stress and surface reflectance, providing a solid
foundation for the machine learning-based classification
framework®*. Figure 6 illustrates the soil salinity zones map
for Chennai, Tamil Nadu, India. Figure 8 illustrates profile
graph for validation of soil salinity zones using XGBoost
model for Chennai, Tamil Nadu, India. In the north coast of
Chennai, other regions such as Ennore, Mylapore, Velachery
and Egmore exhibit high to very high soil salinity, primarily
due to their proximity to the coast, tidal influence, poor
drainage conditions and potential seawater intrusion into the
shallow aquifers®. These areas also experience
anthropogenic stress from industrial activity and urban
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runoff, which can exacerbate salinity accumulation in
surface and sub-surface soils.

In contrast, localities like Saidapet, Anna Nagar, Kolathur
and Medavakkam fall within low to very low salinity zones,
likely owing to better drainage, relatively higher elevation
and less direct exposure to coastal influence!. These areas
benefit from more stable land use including vegetated cover
or infrastructure that reduces soil salinization, indicating
spatial variability in salinity distribution closely linked to
geomorphology, hydrology and urban development
intensity®.

Figure 9 illustrates the estimated area distribution of soil
salinity zones in the study area. The bar graph shows that
very high salinity zones occupy the largest area at 145.86
sg.km, indicating severe salt accumulation. This is followed
by very low salinity zones with 89.65 sg.km, suggesting
relatively healthy soil conditions. High salinity zones cover
75.46 sg.km, while low and moderate salinity zones span
65.36 sq.km and 59.78 sg.km respectively. The north coast
of Chennai is characterized by high to very high soil salinity
levels, particularly in zones directly influenced by coastal
proximity, estuarine activity and industrial discharg®. This
region is geographically low-lying and is subjected to
frequent tidal influx, poor natural drainage and seawater
intrusion, especially during dry seasons or groundwater
over-extraction®®.
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The presence of salt pans, marshy wetlands and heavy urban-
industrial pressure further accelerates the accumulation of
surface salts'2. As a result, soils in the northern coastal
stretch of Chennai tend to exhibit elevated salinity, making
them less suitable for agriculture and more prone to
ecological degradation, requiring careful monitoring and
management for sustainable land use and environmental
health®3,

https://doi.org/10.25303/1812da059070

Landuse and land Cover 2025: The visual interpretation of
Landsat 8/9 imagery for April 2025, following the NRSC
Level-3 classification system, enabled the detailed mapping
of landuse and land cover (LULC) categories across the
study area in figure 7. The results are summarized in terms
of spatial extent (in square kilometres), as shown in figure
10 and percentage as shown in figure 11. The urban category
is the most dominant landuse type, occupying approximately
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345.98 km2 (79.3%), which indicates extensive urbanization Plantation areas constitute the second largest class, covering
and built-up development in the region. This suggests 21.96 km? (5%). These are primarily located in the peri-
potential impervious surface expansion and anthropogenic urban and agricultural fringe zones and include managed tree

pressure on surrounding natural and agricultural zones*. crops or agroforestry practices’.
Soil Salinity Classification Zones - Area (Sq.km)
145.86
140
120
100 5065
£
g 80 75.46
: 65.36
feo
40
20
]
& rl )
o e o o o #
) o iy
Rt wd® “ o

Figure 9: Soil Salinity Classification Zones area (sq.km) estimation for Chennai, Tamil Nadu, India
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Figure 10: LULC Classification area (sgq.km) estimation for Chennai, Tamil Nadu, India
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Figure 11: LULC Classification area (%) estimation for Chennai, Tamil Nadu, India
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Land without scrub and land with scrub account for 11.94
km2 (2.7%) and 9.81 km2 (2.2%) respectively*. These
categories represent degraded or semi-natural landscapes,
often vulnerable to erosion, salinity intrusion and seasonal
vegetation stress. Tank and rivers cover 11.70 km? (2.7%)
and 9.72 km? (2.2%) respectively, playing a vital role in
irrigation and local hydrology®. However, proximity of
tanks to saline-prone zones highlights the importance of
monitoring water quality and seasonal recharge?:. Swampy
lands, which span 9.90 km? (2.3%), are ecologically
sensitive areas prone to seasonal inundation and often
coincide with moderate salinity zones, reflecting a dynamic
interface between soil saturation and salt accumulation??.

Mudflats cover 4.38 kmz2 (1%), typically occurring along the
coastal or estuarine edges and are indicative of high
evaporation potential and salt crust formation®. Scrub
forests and sandy areas account for 2.73 km? (0.6%) and 2.00
km2 (0.5%) respectively. While scrub forests may support
low-density vegetation under arid conditions, sandy areas
have poor water retention and are often susceptible to
salinization?”. Fallow lands and croplands are relatively
limited, with areas of 3.69 km? (0.8%) and 2.27 km? (0.5%)
respectively. The limited presence of active cropland
suggests potential constraints on agriculture, possibly due to
soil degradation, salinity stress, or water scarcity°,

When overlaid with the soil salinity classification map, it
was observed that fallow lands, land with scrub, swampy
areas and mudflats are significantly correlated with
moderate to high salinity zones?. Conversely, plantation
zones and active croplands are generally located in areas
with lower salinity levels, highlighting the influence of soil
health on land utilization patterns®. This spatial relationship
reinforces the need for integrated land management practices
to mitigate the impacts of salinity and ensure sustainable
land use planning?3.

The spatial patterns of soil salinity derived using the
XGBoost model and spectral indices reveal strong
correlations with land cover types and proximity to the
coastal environment, particularly along the north coast of
Chennai. These findings are consistent with previous studies
that emphasize the critical role of geomorphological and
hydrological factors in salinity distribution. The coastal and
low-lying urban zones are more vulnerable to saltwater
intrusion and soil degradation due to sea-level rise and
human disturbances?*. The effectiveness of remote sensing-
based indices in capturing subtle spectral variations
associated with salinity confirmed that indices such as S,
NDVI and B, can serve as reliable indicators for identifying
salinity hotspots when combined with machine learning
models like XGBoost?627,

The classification results also revealed that areas with
vegetative stress and exposed soils, such as fallow lands,
scrublands and mudflats, showed stronger salinity signals
while plantation and cropland regions typically coincided
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with zones of lower salinity. These observations support that
vegetation indices (EVI, SAVI) are negatively correlated
with salinity and can be used to infer soil condition
indirectly?®3°. The high salinity observed along Chennai’s
northern coastal belt is also in agreement with studies, which
emphasize the need for localized soil and water conservation
strategies in urbanizing coastal regions?-?2, The study also
benefited from accurate reflectance correction and data
preprocessing methods ensuring the reliability of Landsat-
based salinity mapping®®. Furthermore, the overlay of LULC
with salinity zones provides valuable insights for urban
planning and agricultural sustainability. Urban expansion
over saline-prone zones can exacerbate land degradation and
environmental stress in coastal megacities?®. This integrated
geospatial approach underscores the utility of combining
machine learning, spectral analysis and land cover
assessment to support evidence-based land management
decisions in rapidly developing coastal landscapes.

Conclusion

This study demonstrated an integrated approach for mapping
and analyzing soil salinity in the north coastal region of
Chennai using Landsat 8/9 satellite data, spectral indices and
the XGBoost machine learning model. A comprehensive
suite of salinity, vegetation and brightness indices including
SI, NDSI, NDVI, SAVI, Bl and VSSI was used to capture
spectral variations linked to soil salinity. The XGBoost
model effectively classified the region into distinct salinity
zones, revealing that areas such as Ennore, Mylapore,
Velachery and Egmore are highly affected by salinity, while
regions like Saidapet, Anna Nagar, Kolathur and
Medavakkam exhibit low to very low salinity levels.

The landuse and land cover (LULC) mapping, conducted
through visual interpretation of April 2025 Landsat data
following NRSC Level-3 classification, provided a detailed
inventory of the study area’s surface features. Urban land
was the most dominant class, followed by plantations, water
bodies and various scrub and agricultural categories. The
results revealed that high salinity zones closely coincide with
fallow land, scrubland and swampy areas highlighting the
degradation of land due to salinity build up while active
croplands, water body and plantations were mostly confined
to low-salinity zones.

The results confirm that the combination of remote sensing
indices and machine learning offers a robust framework for
spatially explicit soil salinity assessment. This integrated
methodology supports the findings of recent research and
affirms the utility of EO data in monitoring land degradation,
especially in vulnerable coastal urban environments. The
insights generated from this study can inform sustainable
land and water management, urban expansion planning and
salinity mitigation strategies. Future work may explore
temporal salinity dynamics and the integration of in situ soil
measurements to further enhance model accuracy and
decision-making.
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