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Abstract 
Soil salinization is a growing environmental issue in 

coastal urban regions, impacting land productivity, 

vegetation health and infrastructure. This study 

provides a geospatial assessment of soil salinity across 

the Chennai Metropolitan Region using multi-temporal 

Landsat 8 OLI imagery and spectral salinity indices. 

Thirteen indices including SI, SI1–SI4, SR, RSI, MSR, 

NDSI, NDVI, GNDVI, SAVI, DVI, VSSI and EVI were 

used to capture surface reflectance and vegetation 

degradation. An integrated machine learning-based 

overlay analysis using Random Forest (RF) classified 

salinity into five categories: very low, low, moderate, 

high and very high. Results indicate that the northern 

coastal belt of Chennai, especially areas near the Bay 

of Bengal, falls under high to very high salinity due to 

tidal intrusion, urbanization and inadequate drainage. 

Inland zones like Madhavaram, Ambattur, Alandur, 

Guindy, Velachery and Sholinganallur showed low to 

moderate salinity levels. Landuse Land Cover (LULC) 

data for 2025 was incorporated to examine spatial 

correlations between salinity and urban expansion.  

 

This study highlights the effectiveness of combining 

spectral indices with machine learning to identify 

salinity hotspots and support informed urban planning 

and sustainable land management in vulnerable 

coastal megacities. 
 

Keywords: Soil salinity, Remote sensing, Spectral indices, 

Machine learning, Random Forest and Urban planning. 

 

Introduction 
Soil salinity is a critical form of land degradation that 

adversely affects agricultural productivity, ecological health 

and infrastructure stability, especially in coastal regions 

where seawater intrusion and urban expansion intersect8,29. 

Excessive accumulation of soluble salts in the soil profile 

leads to a decline in soil fertility, reduced plant growth and 

increased surface crusting, all of which have significant 

implications for food security and sustainable land use3,27. In 

urbanizing coastal environments like Chennai, salinity is 

further exacerbated by unplanned development, rising sea 

levels, groundwater over-extraction and poor surface 

drainage systems25,30. Remote Sensing (RS) and Geographic 

Information Systems (GIS) have emerged as indispensable 

tools for mapping, monitoring and managing soil salinity at 

various spatial and temporal scales1,24. These technologies 

enable efficient extraction of land surface characteristics 

such as soil reflectance, vegetation health and topographic 

variations16,26. Spectral indices derived from satellite data -

particularly those based on Landsat 8 OLI bands, offer a 

non-invasive means of detecting saline soils and assessing 

their impact on vegetation cover14. When integrated with 

machine learning (ML) algorithms, such as Random Forest 

(RF), the classification and prediction of salinity levels can 

be significantly enhanced6. 

 

The Chennai Metropolitan Region (CMR) faces multiple 

environmental challenges including coastal erosion, 

seawater intrusion, surface water contamination and 

vegetation stress18,21. The city’s proximity to the Bay of 

Bengal, combined with its flat topography and increasing 

urban sprawl, has led to notable changes in landuse and land 

cover (LULC), contributing to localized salinity build 

up15,28. Regions in the northern coastal belt show high 

vulnerability due to direct tidal influence whereas inland 

zones exhibit comparatively lower levels of salinization13. 

This environmental variability necessitates a detailed and 

spatially explicit analysis to support mitigation and planning 

strategies19. 

 

This study aims to conduct a comprehensive geospatial 

assessment of soil salinity in Chennai using a multi-index 

approach derived from satellite-based spectral reflectance 

data5,22. Thirteen salinity and vegetation indices, including 

SI, SI1–SI4, NDSI, NDVI, SAVI, VSSI and EVI, are 

utilized to derive surface conditions. RF classifier is 

employed to categorize salinity levels across the study 

area10. Furthermore, LULC 2025 is used to understand the 

spatial relationship between land transformation and salinity 

severity17. The novelty of this research lies in its integration 

of multiple spectral indices with a machine learning-based 

classification model to produce a detailed, high-resolution 

salinity map for an urban coastal environment4,12. 

 

Unlike conventional field-based assessments, this approach 

provides a cost-effective, scalable and replicable method to 

monitor soil salinity in real time1,11. Additionally, by 

correlating salinity hotspots with urban development zones, 
the study contributes valuable insights for sustainable land 

management, climate adaptation and urban planning in 

rapidly growing coastal cities like Chennai9,23. 



    Disaster Advances                                                                                                                     Vol. 18 (12) December (2025) 

https://doi.org/10.25303/1812da059070        60 

Material and Methods  
The study is focused on Chennai, the capital of Tamil Nadu, 

located on the south-eastern coast of India along the Bay of 

Bengal. The study area extends approximately 435.77 square 

kilometres between 12°32′N to 13°12′N latitude and 80°04′E 

to 80°20′E longitude (Figure 1). Chennai is a major 

metropolitan hub with a population exceeding 10 million, 

making it one of the largest and most densely populated 

cities in India. The city experiences a tropical wet and dry 

climate, with peak rainfall during the northeast monsoon. 

The region’s flat terrain and low elevation, combined with 

coastal location, make it highly susceptible to flooding, 

saline water intrusion and land degradation, especially in 

low-lying and peri-urban regions. 

 

Urban expansion, coupled with reclamation of wetlands, 

unregulated construction and groundwater over-extraction, 

has intensified the environmental stress on the region. Soil 

salinization has become a pressing issue, particularly in the 

northern and southeastern parts of Chennai, where increased 

surface reflectance and vegetation loss are evident. These 

changes have adversely impacted agricultural viability, 

ecological stability and infrastructure longevity. To address 

these challenges, it is essential to implement a spatially 

informed monitoring framework that integrates remote 

sensing indices to detect and analyse soil salinity and 

vegetation stress. Such analysis provides crucial insights for 

urban planners, environmental managers and policymakers 

to identify vulnerable zones, guide sustainable development 

and mitigate long-term risks associated with land 

degradation and environmental change in Chennai.  

 

The region is characterized by coastal climatic conditions, 

making it susceptible to soil salinization, urban expansion 

and vegetation stress24. Satellite imagery for April 2025 was 

acquired from the United States Geological Survey (USGS) 

Earth Explorer portal using Landsat 8 OLI/TIRS data27. 

April was chosen to represent pre-monsoon dry conditions, 

when salinity effects are more pronounced and vegetation 

stress becomes spatially evident. 

 

The satellite data underwent radiometric and atmospheric 

correction. Band combinations were used to derive various 

spectral indices using the raster calculator in ArcGIS16. Each 

index is used to detect soil salinity, vegetation health, or 

both15.  

 

 
Figure 1: Study area location map  
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Table 1 

Spectral Indices and Formulas Used for Salinity and Vegetation Assessment 

S.N. Index Formula 

1.  Salinity Index (SI)8,11 𝑆𝐼 =  √𝐵𝑙𝑢𝑒 ∗ 𝑅𝑒𝑑  

2.  Salinity Index 1 (SI1)14 𝑆𝐼1 =
𝐵𝑙𝑢𝑒

𝑅𝑒𝑑
   

3.  Salinity Index 2 (SI2)17 𝑆𝐼2 =
(𝐵𝑙𝑢𝑒−𝑅𝑒𝑑) 

(𝐵𝑙𝑢𝑒+𝑅𝑒𝑑)
  

4.  Salinity Index 3 (SI3)20 𝑆𝐼3 =
(𝐺𝑟𝑒𝑒𝑛∗𝑅𝑒𝑑) 

𝐵𝑙𝑢𝑒
  

5.  Salinity Index 4 (SI4)21 𝑆𝐼4 =
(𝑁𝐼𝑅∗𝑅𝑒𝑑) 

𝐺𝑟𝑒𝑒𝑛
  

6.  Simple Ratio (SR)19 𝑆𝑅 =
(𝑅𝑒𝑑−𝑁𝐼𝑅) 

(𝐺𝑟𝑒𝑒𝑛+𝑁𝐼𝑅)
  

7.  Ratio Spectral Index (RSI)22 𝑅𝑆𝐼 =
𝑅𝑒𝑑

𝑁𝐼𝑅
   

8.  Mosaic Simple Ratio (MSR)26 𝑀𝑆𝑅 =
𝑁𝐼𝑅

𝑅𝑒𝑑
    

9.  Normalized Difference Salinity Index (NDSI)28 𝑁𝐷𝑆𝐼 =
(𝑅𝑒𝑑−𝑁𝐼𝑅) 

(𝑅𝑒𝑑+𝑁𝐼𝑅)
  

10.  Normalized Difference Vegetation Index (NDVI)2 𝑁𝐷𝑉𝐼 =
(𝑁𝐼𝑅−𝑅𝑒𝑑) 

(𝑁𝐼𝑅+𝑅𝑒𝑑)
  

11.  Green Normalized Difference Vegetation Index (GNDVI)1 𝐺𝑁𝐷𝑉𝐼 =
(𝑁𝐼𝑅−𝐺𝑟𝑒𝑒𝑛) 

(𝑁𝐼𝑅+𝐺𝑟𝑒𝑒𝑛)
  

12.  Soil Adjusted Vegetation Index (SAVI)4 𝑆𝐴𝑉𝐼

=
(𝑁𝐼𝑅 − 𝑅𝑒𝑑) 

(𝑁𝐼𝑅 + 𝑅𝑒𝑑) + 𝐿 ∗ (1 − 𝐿)
  

13.  Differential Vegetation Index (DVI)7 𝐷𝑉𝐼 = 𝑁𝐼𝑅 − 𝑅𝑒𝑑  

14.  Vegetation Soil Salinity Index (VSSI)12 VSSI = 2 * Green – 5 * (Red + 

NIR) * Green – 5 * (Red + 
NIR)         

15.  Enhanced Vegetation Index (EVI)29 𝐸𝑉𝐼 = 2.5 ∗
𝑁𝐼𝑅−𝑅𝐸𝐷

𝑁𝐼𝑅+(6∗𝑅𝐸𝐷−7.5∗𝐵𝑙𝑢𝑒)+1
  

16.  Brightness Index (BI)30 
𝐵𝐼 = √

𝑅𝑒𝑑2+𝐺𝑟𝑒𝑒𝑛2

2
  

 

Salinity indices are spectral indicators derived from remote 

sensing data that help to detect and monitor salt-affected 

soils based on their unique reflectance characteristics in 

different wavelength bands10. Soil salinity alters the surface 

reflectance, typically increasing brightness in the visible 

(Blue, Green, Red) bands and decreasing reflectance in the 

near-infrared (NIR) band due to reduced vegetation cover 

and soil crusting (Table 1)13. 

 

Machine Learning Technique 

Model Selection and Implementation: Extreme gradient 

boosting (XGBoost) algorithm was employed due to its 

superior performance in classification and regression tasks, 

handling of non-linearity and resistance to over fitting 

through regularization. The model was trained using spectral 

indices derived from satellite data as input features. These 

include salinity indices, vegetation indices and brightness 

indices known to correlate with soil salinity. The training 

dataset was split into training (70%) and testing (30%) 

subsets. Feature standardization was applied before model 

training. 

 

The XGBoost model is based on gradient boosting decision 

trees, where a series of weak learners (trees) are combined 

to create a strong learner. The objective function of XGBoost 

is defined as: 

 

𝐿(∅) = ∑ 𝑙(𝑦𝑖, Ŷ𝑖) + ∑ Ω(fk)𝐾
𝑘=1

𝑛
𝑖=1           (1) 

 

where 𝑙(𝑦𝑖, Ŷ𝑖) is loss function that measures the difference 

between the prediction Ŷ𝑖  and the actual target 𝑦𝑖, 

Ω(fk) is γT +
1

2
λ ∑ 𝑤𝑗

2𝑇
𝑗=1  for regularization of term 

controlling model complexity, T is number of leaves in the 

tree, wj is weight of the jth leaf and γ, λ is regularization 

parameters.  

 

The prediction of an instance is obtained by summing the 

outputs of all regression trees: 

 

Ŷ = ∑ 𝑓𝑘(𝑥𝑖),     𝑓𝑘
𝐾
𝑘=1 𝜖 𝑓                        (2) 

 

where f is space of regression trees, fk is individual tree 

function. Model tuning was carried out using grid search and 

cross-validation for parameters including learning rate (η), 

maximum depth, subsample ratio, column sample by tree 
and number of boosting rounds. 
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Table 2 

Accuracy Metrics and Formulae for Salinity Classification Model Evaluation 

Metrics Formulae Description 

Overall Accuracy (OA) 𝑂𝐴 =  
∑ 𝐶𝑖𝑖

𝑛
𝑖=1

𝑁
  

𝐶𝑖𝑖 is the correctly classified samples for class i and N 

is the total number of samples. 

Kappa Coefficient (κ): 𝑘 =
𝑝𝑜−𝑝𝑒

1− 𝑝𝑒
  𝑝𝑜 is observed agreement and 𝑝𝑒 is expected agreement 

by chance. 

Precision (P): 𝑃 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
  

TP is True Positives, FP: False Positives, FN: False 

Negatives. The XGBoost model was implemented in 

Python using the XGBoost library. The final trained 

model was used to generate salinity zone maps over the 

study area, which were validated against ground truth 

and existing salinity data. 

Recall (R): 𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
  

F1 Score: 𝐹1 = 2 ∗
 𝑃∗𝑅

𝑃+𝑅
  

 

Accuracy Assessment: To evaluate the performance of the 

XGBoost model in salinity classification, the following 

accuracy metrics were computed using the confusion matrix 

derived from predicted vs. actual salinity zones (Table 2). 

 

Landuse and Land Cover Mapping: Landsat 8 OLI and 

Landsat 9 imagery (30 m resolution) from April 2025 were 

used for Land Use and Land Cover (LULC) mapping. 

Cloud-free images were pre-processed through radiometric 

calibration, atmospheric correction (DOS1) and mosaicking. 

The NRSC Level-3 classification scheme guided 

interpretation using false colour composites (FCC) from 

bands 5, 4 and 3. Visual interpretation was performed 

onscreen in ArcGIS at a 1:10,000 scale using keys like tone, 

texture, shape and association. Ancillary data, including 

topographic maps, prior LULC maps and Google Earth 

imagery, supported accurate feature delineation. The final 

LULC map was overlaid with a soil salinity classification 

map generated using the XGBoost model.  

 

This integrated analysis revealed that salinity predominantly 

affected fallow lands, sandy areas, swampy lands and land 

without scrub. The study highlights the spatial correlation 

between LULC patterns and soil salinity, offering valuable 

inputs for targeted land management and reclamation 

strategies. 

 

Results and Discussion 
The application of the XGBoost machine learning model for 

soil salinity mapping utilized a suite of spectral indices 

derived from satellite imagery21. These indices were selected 

for their relevance in detecting surface reflectance changes 

influenced by salinity and vegetation stress26. The spatial 

variation and statistical range of each index are presented in 

figure 2 to 5. Figure 2 highlights the spatial distribution of 

salinity-specific indices. The salinity index (SI) (Figure 2a) 

ranges from –0.45 to 0.63, exhibiting moderate spatial 

variability across the region. Elevated SI values are observed 

in coastal and low-lying inland zones, indicating areas prone 

to salt accumulation27. Salinity index 1 (SI1) (Figure 2b), 

with a range from –0.23 to 0.72, demonstrates higher 

sensitivity in detecting saline patches, particularly over 

sparsely vegetated and bare soil regions30. Salinity index 2 

(SI2) (Figure 2c) spans from –0.61 to 0.11 and shows 

predominantly negative values, possibly due to surface 

moisture or organic matter suppressing salinity signals24. 

Meanwhile, salinity index 3 (SI3) (Figure 2d) ranges from – 

0.49 to 0.18, highlighting regions with reduced salinity 

expression, often influenced by clayey or shaded areas22. 

Figure 3 presents ratio-based indices that further refine 

salinity detection. Salinity index 4 (SI4) (Figure 3a) ranges 

from –0.08 to 0.42, balancing responses from soil brightness 

and vegetative stress23. Simple ratio (SR) (Figure 3b), with 

values from –0.47 to 0.37, shows negative values in regions 

dominated by non-photosynthetic or salt-affected surfaces19.  

 

Ratio spectral index (RSI) (Figure 3c) ranges from –0.76 to 

0.35, offering enhanced sensitivity to surface reflectance 

where salt crusting is prevalent29. The Mosaic simple ratio 

(MSR) (Figure 3d), ranging from –0.32 to 0.79, captures 

strong spectral contrasts in heterogeneous land-use zones, 

particularly in agricultural-fallow transitions often 

associated with salinity accumulation14. 

 

Figure 4 features normalized indices that integrate 

vegetation responses as proxies for salinity stress. The 

Normalized Difference Salinity Index (NDSI) (Figure 4a) 

ranges from –0.49 to 0.13 where negative values dominate, 

highlighting vegetative degradation due to salinity5. The 

Normalized Difference Vegetation Index (NDVI) (Figure 

4b), with a range from –0.13 to 0.49, reveals clear 

distinctions in vegetation vigor, with NDVI values below 0.2 

aligning with moderate to high salinity zones7. The Green 

Normalized Difference Vegetation Index (GNDVI) (Figure 

4c), spanning –0.14 to 0.44, displays increased sensitivity to 

chlorophyll variations, especially in semi-arid or salt-

stressed zones12.  

 

Soil Adjusted Vegetation Index (SAVI) (Figure 4d) ranges 

from –0.11 to 0.74 and performs effectively in areas with 

partial vegetation cover by minimizing soil background 

effects18. Figure 5 illustrates additional indices that capture 

vegetation degradation and soil reflectance properties. The 
Differential Vegetation Index (DVI) (Figure 5a), ranging 

from –0.02 to 0.17, shows limited contrast but is useful for 

detecting subtle vegetation variations linked to salt stress15. 
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The Vegetation Soil Salinity Index (VSSI) (Figure 5b), with 

values from –0.07 to 0.73, offers a comprehensive view of 

both vegetation health and soil salinity, with higher values 

marking saline-affected zones13.  

 

The Enhanced Vegetation Index (EVI) (Figure 5c), varying 

between –0.09 and 0.72, is especially effective in capturing 

vegetation stress responses in moderately saline 

environments10. Lastly, the Brightness Index (BI) (Figure 

5d) spans from –0.74 to 0.25, highlighting areas with high 

surface reflectance commonly associated with salt-encrusted 

or bare soils8. These indices collectively serve as robust 

indicators of salinity zones and are critical inputs for the 

XGBoost model1.  

 

The variation in their spatial ranges and distributions 

underscores the complex interplay between soil salinity, 

vegetation stress and surface reflectance, providing a solid 

foundation for the machine learning-based classification 

framework4. Figure 6 illustrates the soil salinity zones map 

for Chennai, Tamil Nadu, India. Figure 8 illustrates profile 

graph for validation of soil salinity zones using XGBoost 

model for Chennai, Tamil Nadu, India. In the north coast of 

Chennai, other regions such as Ennore, Mylapore, Velachery 

and Egmore exhibit high to very high soil salinity, primarily 

due to their proximity to the coast, tidal influence, poor 

drainage conditions and potential seawater intrusion into the 

shallow aquifers6. These areas also experience 

anthropogenic stress from industrial activity and urban 

runoff, which can exacerbate salinity accumulation in 

surface and sub-surface soils.  

 

In contrast, localities like Saidapet, Anna Nagar, Kolathur 

and Medavakkam fall within low to very low salinity zones, 

likely owing to better drainage, relatively higher elevation 

and less direct exposure to coastal influence1. These areas 

benefit from more stable land use including vegetated cover 

or infrastructure that reduces soil salinization, indicating 

spatial variability in salinity distribution closely linked to 

geomorphology, hydrology and urban development 

intensity6.  

 

Figure 9 illustrates the estimated area distribution of soil 

salinity zones in the study area. The bar graph shows that 

very high salinity zones occupy the largest area at 145.86 

sq.km, indicating severe salt accumulation. This is followed 

by very low salinity zones with 89.65 sq.km, suggesting 

relatively healthy soil conditions. High salinity zones cover 

75.46 sq.km, while low and moderate salinity zones span 

65.36 sq.km and 59.78 sq.km respectively. The north coast 

of Chennai is characterized by high to very high soil salinity 

levels, particularly in zones directly influenced by coastal 

proximity, estuarine activity and industrial discharg8. This 

region is geographically low-lying and is subjected to 

frequent tidal influx, poor natural drainage and seawater 

intrusion, especially during dry seasons or groundwater 

over-extraction10.  

 

 
Figure 2: a) Salinity Index (SI), b) Salinity Index 1 (SI1), c) Salinity Index 2 (SI2) and  

d) Salinity Index 3 (SI3) for Chennai, Tamil Nadu, India 
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Figure 3: a) Salinity Index 4 (SI4), b) Simple Raito (SR), c) Ratio Spectral Index (RSI) and  

d) Mosaic Simple Ratio (MSR) for Chennai, Tamil Nadu, India 

 

 
Figure 4: a) NDSI, b) NDVI, c) GNDVI and d) SAVI for Chennai, Tamil Nadu, India 
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Figure 5: a) DVI, b) VSSI, c) EVI and d) Brightness Index (BI) for Chennai, Tamil Nadu, India 

 

 
Figure 6: Soil Salinity Zones Map using XGBoost Model for Chennai, Tamil Nadu, India 
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Figure 7: Landuse and land cover Map (2025) for Chennai, Tamil Nadu, India 

 

 
Figure 8: Profile graph for validation of soil salinity zones using XGBoost model for Chennai, Tamil Nadu, India 

 
The presence of salt pans, marshy wetlands and heavy urban-

industrial pressure further accelerates the accumulation of 

surface salts12. As a result, soils in the northern coastal 

stretch of Chennai tend to exhibit elevated salinity, making 

them less suitable for agriculture and more prone to 
ecological degradation, requiring careful monitoring and 

management for sustainable land use and environmental 

health13. 

Landuse and land Cover 2025: The visual interpretation of 

Landsat 8/9 imagery for April 2025, following the NRSC 

Level-3 classification system, enabled the detailed mapping 

of landuse and land cover (LULC) categories across the 

study area in figure 7. The results are summarized in terms 
of spatial extent (in square kilometres), as shown in figure 

10 and percentage as shown in figure 11. The urban category 

is the most dominant landuse type, occupying approximately 
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345.98 km² (79.3%), which indicates extensive urbanization 

and built-up development in the region. This suggests 

potential impervious surface expansion and anthropogenic 

pressure on surrounding natural and agricultural zones14. 

Plantation areas constitute the second largest class, covering 

21.96 km² (5%). These are primarily located in the peri-

urban and agricultural fringe zones and include managed tree 

crops or agroforestry practices7. 

 

 
Figure 9: Soil Salinity Classification Zones area (sq.km) estimation for Chennai, Tamil Nadu, India 

 

 
Figure 10: LULC Classification area (sq.km) estimation for Chennai, Tamil Nadu, India 

 

 
Figure 11: LULC Classification area (%) estimation for Chennai, Tamil Nadu, India 
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Land without scrub and land with scrub account for 11.94 

km² (2.7%) and 9.81 km² (2.2%) respectively4. These 

categories represent degraded or semi-natural landscapes, 

often vulnerable to erosion, salinity intrusion and seasonal 

vegetation stress. Tank and rivers cover 11.70 km² (2.7%) 

and 9.72 km² (2.2%) respectively, playing a vital role in 

irrigation and local hydrology15. However, proximity of 

tanks to saline-prone zones highlights the importance of 

monitoring water quality and seasonal recharge21. Swampy 

lands, which span 9.90 km² (2.3%), are ecologically 

sensitive areas prone to seasonal inundation and often 

coincide with moderate salinity zones, reflecting a dynamic 

interface between soil saturation and salt accumulation22.  

 

Mudflats cover 4.38 km² (1%), typically occurring along the 

coastal or estuarine edges and are indicative of high 

evaporation potential and salt crust formation26. Scrub 

forests and sandy areas account for 2.73 km² (0.6%) and 2.00 

km² (0.5%) respectively. While scrub forests may support 

low-density vegetation under arid conditions, sandy areas 

have poor water retention and are often susceptible to 

salinization27. Fallow lands and croplands are relatively 

limited, with areas of 3.69 km² (0.8%) and 2.27 km² (0.5%) 

respectively. The limited presence of active cropland 

suggests potential constraints on agriculture, possibly due to 

soil degradation, salinity stress, or water scarcity30.  

 

When overlaid with the soil salinity classification map, it 

was observed that fallow lands, land with scrub, swampy 

areas and mudflats are significantly correlated with 

moderate to high salinity zones24. Conversely, plantation 

zones and active croplands are generally located in areas 

with lower salinity levels, highlighting the influence of soil 

health on land utilization patterns19. This spatial relationship 

reinforces the need for integrated land management practices 

to mitigate the impacts of salinity and ensure sustainable 

land use planning23.  

 

The spatial patterns of soil salinity derived using the 

XGBoost model and spectral indices reveal strong 

correlations with land cover types and proximity to the 

coastal environment, particularly along the north coast of 

Chennai. These findings are consistent with previous studies 

that emphasize the critical role of geomorphological and 

hydrological factors in salinity distribution. The coastal and 

low-lying urban zones are more vulnerable to saltwater 

intrusion and soil degradation due to sea-level rise and 

human disturbances24. The effectiveness of remote sensing-

based indices in capturing subtle spectral variations 

associated with salinity confirmed that indices such as SI, 

NDVI and BI, can serve as reliable indicators for identifying 

salinity hotspots when combined with machine learning 

models like XGBoost26,27. 

 

The classification results also revealed that areas with 
vegetative stress and exposed soils, such as fallow lands, 

scrublands and mudflats, showed stronger salinity signals 

while plantation and cropland regions typically coincided 

with zones of lower salinity. These observations support that 

vegetation indices (EVI, SAVI) are negatively correlated 

with salinity and can be used to infer soil condition 

indirectly29,30. The high salinity observed along Chennai’s 

northern coastal belt is also in agreement with studies, which 

emphasize the need for localized soil and water conservation 

strategies in urbanizing coastal regions21,22. The study also 

benefited from accurate reflectance correction and data 

preprocessing methods ensuring the reliability of Landsat-

based salinity mapping19. Furthermore, the overlay of LULC 

with salinity zones provides valuable insights for urban 

planning and agricultural sustainability. Urban expansion 

over saline-prone zones can exacerbate land degradation and 

environmental stress in coastal megacities23. This integrated 

geospatial approach underscores the utility of combining 

machine learning, spectral analysis and land cover 

assessment to support evidence-based land management 

decisions in rapidly developing coastal landscapes. 

 

Conclusion 
This study demonstrated an integrated approach for mapping 

and analyzing soil salinity in the north coastal region of 

Chennai using Landsat 8/9 satellite data, spectral indices and 

the XGBoost machine learning model. A comprehensive 

suite of salinity, vegetation and brightness indices including 

SI, NDSI, NDVI, SAVI, BI and VSSI was used to capture 

spectral variations linked to soil salinity. The XGBoost 

model effectively classified the region into distinct salinity 

zones, revealing that areas such as Ennore, Mylapore, 

Velachery and Egmore are highly affected by salinity, while 

regions like Saidapet, Anna Nagar, Kolathur and 

Medavakkam exhibit low to very low salinity levels.  

 

The landuse and land cover (LULC) mapping, conducted 

through visual interpretation of April 2025 Landsat data 

following NRSC Level-3 classification, provided a detailed 

inventory of the study area’s surface features. Urban land 

was the most dominant class, followed by plantations, water 

bodies and various scrub and agricultural categories. The 

results revealed that high salinity zones closely coincide with 

fallow land, scrubland and swampy areas highlighting the 

degradation of land due to salinity build up while active 

croplands, water body and plantations were mostly confined 

to low-salinity zones.  

 

The results confirm that the combination of remote sensing 

indices and machine learning offers a robust framework for 

spatially explicit soil salinity assessment. This integrated 

methodology supports the findings of recent research and 

affirms the utility of EO data in monitoring land degradation, 

especially in vulnerable coastal urban environments. The 

insights generated from this study can inform sustainable 

land and water management, urban expansion planning and 

salinity mitigation strategies. Future work may explore 

temporal salinity dynamics and the integration of in situ soil 

measurements to further enhance model accuracy and 

decision-making. 
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